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A formula is derived for the approximate calculation of the correlation energy 
of both open and closed shell systems. The formula integrates a functional of  
the one- and two-electron density matrices, obtained from a wavefunction built 
up by one or several Slater determinants. 

Some test calculations on the ground state of diatomic molecules at several 
internuclear distances and on many excited states of atoms and molecules show 
the goodness of  this method. 
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In a preceding paper [1] we have derived a formula for the approximate calculation 
of the correlation energy for the closed shells, starting from the knowledge of the 
H F  wavefunction and its one-electron and two-electron density matrices. By means 
of this formula the calculation of the correlation energy is reduced to the evaluation 
of the integral of  an electronic density functional. Its application to a great 
number of closed-shell systems gives good results: the mean error is about 3 - 4 ~  
of the correlation energy value. Taking into account the goodness of these results, we 
decided to work out an analogous formula which can be applied to a more complex 
type and larger number of  systems. We are especially interested in the calculation 
of the correlation energy for two different types of problem: the excited electronic 
states of  atoms and molecules and the potential energy curves ofdiatomic molecules. 
In the first case we are concerned with open shell systems, usually described by a 
suitable combination of two determinants. The second problem requires us to 
build a two- or three-determinants wavefunction, according to whether the mole- 
cule is homonuclear or heteronuclear. By these statements we mean obviously 
that the wavefunction must be a linear combination of the lowest number of  
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determinants,  which assures both a right spatial symmetry and spectral multiplicity 
and, for the diatomic molecules, the right behaviour at the dissociation limit. 

Adapting our formula for the calculation of  the correlation energy to the needs of  
the new form of  the wavefunction, we have taken into account,  on one hand, the 
obvious modification of  the density matrix structure, and on the other hand, the 
fact that  our starting wavefunction is already partially correlated in a different way 
for the different parts of  the space. 

According to the formalism of  our preceding paper [1], we write the wavefunction 
of  the system in the form: 

�9 (x~, x~ . . . . .  x~) = % ( x ~ ,  x ~ , . . . ,  x~) 1 - I  (l  - ~(~,, ~,)) (1) 

where x~ indicates the spatial and the spin coordinates of  the electron i, while r~ only 
its spatial coordinates. The function cp(r~, rj) is thus defined: 

(2) 

where r = Ir~ - r/I; R = (r~ + rj)/2 in a.u./3 is a function o f  R and 93(r~, rj) fulfils 
the cusp condit ion for r~ --> rj [2]. Making the same approximations as in [1], we 
obtain that 

! v v v t t i v P2(rl, r2; rl,  r2) = P~ r2; rl, rs)(1 - ~(rl, r2) - ~o(rl, r2) + qo(rl, r2)5o(rl, r2)), 

where P~(rz, r~; r~, r~) is the two-electron density matrix without  spin [3], cal- 
culated starting from ~0(xl ,  x ~ , . . . ,  Xv) function. We maintain also the ap- 
proximation,  according to which the correlation factor in (1) does not  modify 
the one-electron density matrix, that is, we impose the condit ion:  

This last assumption has as the necessary and sufficient condition that the following 
relationship (and its symmetrical one) be satisfied: 

f P~ r;, r2)(~o(rl, r2)~o(rs r2) - ~o(rl, r2) - p(r[, r2)) dr2 = 0, (Vrl, rs r2 

(3) 

If q~(rl, r2) is such that  (3) is satisfied, the total energy can be written as a sum of  two 

terms: 

if o 1 E = Eo + ~ P2(rl,  r2). (qo(rl, r~) 2 - 2qo(rl, r2)) r drl dr2 (4) 

where Eo = (Wol HIWo) and the other summand is defined, by us, as the correlation 
energy, in analogy to what  is established in the closed-shell case. In order  to cal- 
culate the correlation energy, it is therefore sufficient to determine the ~(rl, r2) 



Correlation Energy for Closed and Open Shells 57 

function only in the diagonal points (r; = rl). Putting (2) in (3) with r[ = rl, we 
obtain :. 

f ~(R).P~ + 2)2dr2 

_ f po@~, r2) exp (-fi2r2)(2 - exp (-f12r2)) dr2 = 0. (5) 

Since the function exp (-fi2r2) decreases rapidly as r ~ 0% we determine the value 
of qb(R), which satisfies (5) when the functions po, qs, fl are kept fixed in r = 0. 
Proceeding as in [1], we obtain for q~ this approximate expression: 

1 + v g . j  
Now we observe that, in the range of our approximation, this solution for �9 is 
correct even for points off the diagonal (rl # r;). Here indeed, according to our 
approximation, (3) is reduced to: 

0 - 

Equating to zero either or both of the two integrals in this equation, we obtain 

again �9 = (~/Tr.fl)/(1 + ~/~r.fl). This approximate expression of  r is probably 
quite sufficient, since we use it only for the calculation of the correlation energy, as 
defined in (4). That integral indeed does not contain any terms which can have a 
critical behaviour. 

Therefore we obtain for the correlation energy the following relation: 

~o- }f"~ P~ R) (2exp(-/~=r~)(  1 -  ~(R)(1 + 2 ) )  

(6) 
Since again exp (-p2r2) goes rapidly to zero for r ~ o% we approximate the integral 
in dr, developing P2~ r2) until the 2nd order in r. So (6) becomes: 

fP~(R,R) ( - t 2 ) ( 1  - ~(R)(1 + -~fl))tdt Eo = - z. j -~ [2/~fexp 

 fexp(-,2)(1- *(R)(1 + a, 

~----~fi f exp (-t2)(1- (P(R)(l + ~-~) )2t3 dt] dR 
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where 

{ 2 o (  r V,P2 R -  ~ ; R +  
K ~ . . . . . . . . . . . .  . 

2 2 ,=o 

The integral in square brackets is well represented by an expression of the type: 

1 + 0.173Wexp (-0.58//3) 
H(/3, IV) = 0.18794 

1 + 

where W = K//32, as it is shown in [1]. Therefore we obtain the final formula: 

Eo = -2~r f  po(~; R) H(/3, W)dR.  (7) 

This formula has already been used by us to calculate the correlation energy of 
excited states [4, 5], taking for/3 the same expression, previously described in [1] 
for closed-shell systems. In the case of excited levels, formula (7) has to be regarded 
as substantially correct, since it allows one to ignore, in the calculation, the con- 
tributions relative to singly occupied orbitals. These incorrect contributions remain 
unavoidable when one uses formulae which integrate functions of the electronic 
density only. 

Since (7) must be valid, whatever the starting wavefunction ~Fo be, the problem now 
is how to find an expression for the/3 function which takes into account the good- 
ness of the ~Fo itself. The correlation factor, added to the ~Fo, must introduce in the 
wavefunction such terms which should modify it only to account for the electron 
collisions. Its zone of influence must therefore be restricted to a narrow volume, 
around each electron, inside which it changes the probability of finding another 
electron. Making this volume proportional to the volume of the exclusion in 
Wigner's formula, we have obtained for/3 in [1] the expression/3 = q.pl/3 with 
p = PZHr(R, R) and found q = 2.29 as the best value for a very large number of 
cases. If  now we suppose to improve, step by step, the goodness of the wavefunc- 
tion, it is reasonable to assume that the volume in which the correlation function 
(2) works must decrease monotonically and be zero when ~Fo is the exact wave- 
function. In order to meet this requirement, we propose the following expression 
for/3: 

/3 = q[1 § a ( ( -h (1 )  =P~176 r2, r2) ~j; r~', rs 

t ! 2 

( -  h(1) - h(2))P2Hr(r~, r2; r~, r21] d =,1] ~fR~Zra . . . . . . .  j , ,=~/~.,  , , (8) 

where h(i) = -�89 - ~Z~/([R~ - r~[) and p(R) = P~ R). P~ r2; r~', r~), 
P2HF(rl, r2; r~', r~) are the two-electron density matrices, without spin, derived 
respectively from ~Fo and ~F~F. By ~FHr we mean the wavefunetion of the system 
expressed in terms of the lowest possible number of determinants, which shall assure 
the right spatial symmetry and spectral multiplicity. The use of (8) is clear for the 
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case of closed shell systems, when one starts with the HF wavefunction and 
improves it, adding other determinants to obtain a partially correlated wavefunc- 
tion ~Fo. This procedure is essential if one wishes to calculate, for instance, the 
energy of a molecule, increasing successively the length of one bond and obtain the 
right behaviour of the wavefunction at the dissociation limit. 

Although (8) must be considered fundamentally as an empirical formula, it can be 
justified as follows. The factor q. pl/3 represents a quantity analogous to the volume 
of exclusion in Wigner's formula, as in [1]. The factor in the square brackets is 
equal to 1 if ~F0 coincides with ~Fr~r, as defined above, while it becomes infinity in 
case q~o is the exact wavefunction. This last statement is justified as follows. If  ~Fo 
satisfies exactly to the time independent Schr6dinger equation 

HtFo = E~o (9) 

where H is the usual electrostatic Hamiltonian H = ~ h(i) + �89 ~ , j  1/r~s, then 
premultiplying both the members in (9) by ~Fo(xz, x 2 , . . . ,  XN)* and integrating in 
d~l &r2. �9 �9 dan dra. �9 �9 drN =- da dr3...m we obtain: 

l ( h(1) + h(2) + l ) p ~  r2; r~,r2) 
N ( N -  1) 

,~=3f x*/  l\r. !]'ro(X. xN)d~dr3 ~ + 'Vo(X , . . . . .  I. + . . . .  , 
. =  r~j] " "  

f ~Fo(xl, x 2 , . . . ,  xu)*H(3 , . . . ,  N)~Fo(Xl, x2 . . . .  , xN) d~ dr3...N + 

E 
= N ( N  - 1) 'P~ r2; r~, r~) 

from which 

h(1) + h(2) + P~ r2, r~, r~) = EP~ r2, r~, rs + f(r~,  r2; I~, r2). 
r:2/ 

(10) 

t ~,t After we have acted on P~ r2; r~, 2) with (h(1) + h(2)), removed the apices and 
sought the limit for r~ --~ r2, we see that the second member in (10) reaches a finite 
value. As in general l i m ~  P~ r2) # O, it must be true that: 

lira [(h(1) + h(2))P~ r~; r~, r~)],~=~ 

It follows from (8) that, if To is an exact solution of the time-independent Schr6- 
dinger equation, fi must be equal to infinity and therefore q~(r~, r2) = 0. To check 
the goodness of an expression like (8) for fl, we have made a set of calculations 
drawing empirically the best value for a in (8). 

With a = 7 we have calculated the energy of the ground state of the He, by means 
of 

Wo = czlls(t)ls(2)l + c212s(1)2s(2)] 
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obtaining EHr = -- 2.8617 a.u., Eo = - 2.8775 a.u., Eo = - 0.0248 a.u., Eo + Eo = 
-2.9023 a.u., Eexp = - 2 . 9 0 3 7  a.u. and the potential  energy curves for H2(X1E +) 
and Li~(X1Z +) respectively by means  of  

~F o = czll~g(1)l~o(2)f + c2[1~(1)1~u(2) I 

qPo = cl lcore 2%(5)2%(6)I + ca]core 2cr~(5)2cru(6)]. 

The results are repor ted in Table 1 and Figs. 1 and 2 for H2 and in Table 2 and 
Figs. 3 and 4 for  Li2. 

Finally we have calculated the energies of  some electronic excited states of  Be and 
other more  complex systems, like C2H~ and CH20 ,  already previously studied 
[4, 5]. In these cases we have ~Fo - ~FHF. The results are shown in Table 3. 

T a b l e  1. H F ,  Eo, c o r r e l a t i o n ,  t o t a l  a n d  e xa c t  n o n - r e l a t i v i s t i c  ene rg ie s  fo r  H2(X12;o +) 

a t  v a r i o u s  b o n d  l eng ths .  All  un i t s  a r e  g ive n  in a t o m i c  un i t s  

R E~F 13o Ec Eo + Eo Eo~p[ll] 

1.0 - 1.0849 - 1.0984 - 0 . 0 2 4 3  - 1.1227 - 1.1245 

1.4 - 1.1334 - 1.1519 - 0 . 0 2 2 9  - 1.1748 - 1.1745 

2.0 - 1.0914 - 1.1208 - 0 . 0 1 9 4  - 1.1402 - 1.1381 

3.0 - 0 . 9 8 9 2  - 1.0482 - 0 . 0 1 1 9  - 1.0601 - 1.0573 

8.0 - 0 . 7 8 6 0  - 0 . 9 9 9 9 1  - 0 . 0 0 1 3 1  - 1.0012 - 1.0001 

a . u .  

- 0 , 9 5  

- 1 . 0 0  

- -  1 . 0  

- -  1.1~ 

i I 

l 
I / /" 
I / y .  

- E H F  

I / ,'/r 
E o + E  c PlP~i I1 �9 E e x  p 

( i  
/ 

/ .i 

1.2~ L , I L L , I F ig .  1. B e h a v i o u r s  o f  E ~ ,  Eo, Eo + Eo as 
0 2 4 6 8 a . u .  

R f u n c t i o n s  o f  R ( i n t e r a t o m i c  d i s t ance )  f o r  H2 
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F i g .  2 .  B e h a v i o u r  o f  Eo as  a f u n c t i o n  o f  R 

f o r  H2  

--0.0125 

- -  0.025 

f 
f 

} ~ I i I ! I 
2 4 6 8 a .U .  

R 

T a b l e  2.  H F ,  E0,  c o r r e l a t i o n ,  t o t a l  a n d  e x a c t  n o n - r e l a t i v i s t i c  e n e r g i e s  f o r  L i2(X1Zg +) 

a t  v a r i o u s  b o n d  l e n g t h s .  Al l  u n i t s  a r e  g i v e n  in  a t o m i c  u n i t s  

R EHF Eo Eo Eo + Eo Eoxp[lO] 

4 . 0  - 14 .8523  - 14 .8598  - 0 . 1 2 0 8  - 1 4 . 9 8 0 6  - 1 4 . 9 8 3 0  

5 .4  - 14 .8708  - 1 4 . 8 8 1 2  - 0 . 1 1 3 9  - 14 .9951  - 14 .9958  

6 .0  - 1 4 . 8 6 7 4  - 1 4 . 8 8 0 5  - 0 . 1 1 0 6  - 14 .9911  - 14 .9915  

8 .5  - 1 4 . 8 3 9 5  - 14 .8698  - 0 . 1 0 1 6  - 14 .9714  - 1 4 . 9 6 8 9  

a . u .  

- 1 4 . 8 0  

- -  14.8! 

- 14.9q 

- -  1 4 . 9  

- -  15.01 

. . . . .  EHF 

- - E  o 

. . . . . . .  Eo+E c 

�9 E e x  p 

\ 

~ / ~  ~ ~  

F i g .  3 .  B e h a v i o u r s  o f  E~F,  Eo,  Eo + E o  a s  I , t , i 
f u n c t i o n s  o f  R f o r  Li2 4 6 R 8 a.u. 



a , u .  

- 0 . 1 0 0  

- 0.11 

- 0 .12  

~ f 

I i J i L 
4 6 8 

R 
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' Fig. 4. Behaviour of Eo as a function of R 
a . u .  

for Li2 

A set o f  mod i f i ed  G a u s s i a n  func t ions  [6, 7] cen t r ed  on  the  va r i ous  a toms ,  has  been  

e m p l o y e d ;  we go t  the  orb i ta l  exponen t s  f r o m  Refs .  [8-10]. 

T h e  accu racy  o f  the  ca l cu la t ions  r e p o r t e d  a b o v e  seems to  p r o v e  t h a t  f o r m u l a  (7), 

w i th /3  g iven  by (8), w o r k s  in a very  sa t i s fac tory  way.  I t  restr icts  the  ca l cu l a t i on  o f  

the  c o r r e l a t i o n  energy  on ly  to  those  par t s  o f  the  space in wh ich  the  e lec t ron ic  

col l i s ions  real ly  t ake  place.  The  f o r m u l a  (8) a l lows  us to  i m p r o v e  p rogress ive ly  the  

w a v e f u n c t i o n  ~F0 and  even tua l ly  to  cen t re  this  i m p r o v e m e n t  in those  par ts  o f  the  

space  m o r e  in te res t ing  for  pa r t i cu l a r  pu rposes  ( for  ins tance ,  a special  b o n d  du r ing  

its d issoc ia t ion) .  Such  an  i m p r o v e m e n t  is indeed  a l r eady  t aken  in to  a c c o u n t  by 

m e a n s  o f  the  s t ruc ture  of/3,  so tha t  the  to t a l  effect is ba lanced .  

Table 3. HF, correlation, total and vertical transition energies of some states of Be, CzHa and 
CH20 

Eur - Eo Eo Eo + Eo AEtot AEex, 
System Excitation (a.u.) (a.u.) (a.u.) (eV) (eV) 

Be 1S Ground state - 14.5726 - 0.0949 - 14.6675 - -  - -  
1S 2s -+ 3s - 14.3541 -0.0664 - 14.4205 6.7 6.8 ~ 
1S 2s -+ 4s - 14.3101 -0.0612 - 14.3713 8.1 8.1 ~ 

C2H4 lAg Ground state -78.0382 -0 .492 -78.5302 - -  - -  
IB1~ lb3~ -+ lb2g -77.762 -0.481 -78.243 7.8 7.66 b 

CH20 ~A~ Ground state - 113.9086 -0.5407 - 114.4493 - -  - -  
1B2 2b2 ~ 6al - 113.6722 -0.5146 - 114.1868 7.14 7.10 ~ 
2B3 Ion -113.5530 -0.5050 -114.0580 10.65 10.88 ~ 

a Atomic energy l e v e l s . . .  Ref. [12]. 
b Colle, R. e t  al. Ref. [4]. 
c Colle, R. et  al. Ref. [5]. 
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